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The topology of large social, technical and biological
networks such as the World Wide Web or protein
interaction networks has caught considerable attention
in the past few years (reviewed in Newman 2003), and
analysis of the structure of such networks revealed that
many of them can be classified as broad-tailed, scale-
free-like networks, since their vertex connectivities
follow approximately a power-law. Preferential attach-
ment of new vertices to highly connected vertices is
commonly seen as the main mechanism that can
generate scale-free connectivity in growing networks
(Watts 2004). Here, we propose a new model that can
generate broad-tailed networks even in the absence of
network growth, by not only adding vertices, but also
selectively eliminating vertices with a probability that
is inversely related to the sum of their first- and second
order connectivity.

Keywords: scale-free networks; network topology;
preferential attachment

The most common explanation for the emergence of
scale-free structures in networks is a process referred to
as preferential attachment. In a nutshell, preferential
attachment assumes that new vertices attach preferen-
tially to already well-connected vertices in a network
(Simon 1955; Barabédsi & Albert 1999). Various
mechanisms leading to preferential attachment have
been described, some of them including conscious
choice (e.g. the world wide web or collaboration
networks; Watts 2004), others assuming an ongoing
duplication of nodes and edges (e.g. protein and gene
networks; Barabasi & Oltvai 2004; Berg et al. 2004).
However, these mechanisms usually require that the
networks are growing, a precondition that is certainly
not given in all networks (Dorogovtsev & Mendes
2000). We propose an alternative model that results in
the emergence of broad-tailed connectivity
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distributions that are best described by a power-law
(hereafter referred to as scale-free-like networks), both
in growing and non-growing networks, without assum-
ing any form of cognition, choice or duplication, leading
to apparent preferential attachment.

In the model presented here, the sum of first- and
second-order connections of a vertex determines the
likelihood of selective removal. A randomly connected
network with initially m vertices is subjected to
selection during t generations. In each generation, a
proportion (p) of the vertices is removed from the
network. To simulate a selective process, a random
vertex is chosen and removed with a probability of 1/¢*,
where ¢ is the sum of its first- and second-order
connectivity, that is, the number of vertices with a
maximal distance of 2 (i.e. the number of neighbours
and secondary neighbours), and « measures the
strength of selection, since higher values of a result in
stronger selection against low values of c¢. This
procedure is repeated until 7= pN vertices are removed
from the network (where Nis the number of all nodes in
the network). Additionally, random vertices can be
removed independent of their fitness value with a
natural vertex death rate d. If after removal the system
contains a number of unconnected vertices (denoted
by u), these are removed too. Finally, v new vertices are
added and connected to random vertices of the
network. The resulting network grows when v>r+u
or is constant in size when v=r+wu. The net number
of added vertices per generation is denoted by
n=v—(r+u). Thus, after ¢ generations, the number
of vertices in the network is m+tn, where m is the
initial network size. Note that no preferential attach-
ment is occurring during the entire process.

We first looked at growing networks by running
simulations over 3000 time steps, starting on a network
consisting of only two vertices connected to each other.
At each time step, the network grew by one vertex,
resulting in a final network of 3002 vertices. The size of
these simulated networks is of the general order of
larger real-world datasets. Simulations of the described
selective removal process resulted in the self-organiz-
ation of networks with vertex connectivities p(k) that
are best described by a power-law in a wide range of
parameter values (figure 1 and table 1). Since network
growth has been shown to be an essential component of
the preferential attachment mechanism, we wanted
to know if the selective removal mechanism would
create scale-free-like distributions when applied to
non-growing networks. Simulations were started on
initially random networks with 3000 vertices, charac-
terized by a Poisson connectivity distribution, and at
each time step, the number of randomly attached
vertices was equal to the number of removed vertices
(thus n=0). We found that the connectivity distri-
bution was best described by a power-law very quickly
(less than 500 time steps for most of the simulations—
for a typical distribution, see figure 1). The scaling of
the simulated networks was conserved even over large
time-scales (t=100 000; table 1); thus growth does not
appear to be an essential component for the selective
removal mechanism to generate scale-free-like
networks.

© 2005 The Royal Society
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Figure 1. A typical connectivity distribution function in a
non-growing network with a=2.5 after 1000 (grey circles) and
100 000 (black circles) time steps. p(k) represents the
frequency of vertices with exactly k connections. The straight
line has a slope of y=2.3. Simulation parameters: r=0.05,
d=0.001, m=3000, n=0. The distributions are best fit by a
power-law (see text).

While many investigated network distributions have
only been fitted by eye (Dorogovtsev & Mendes 2003),
we follow the approach of Stumpf (submitted). This
approach employs the Akaike-information criterion
(AIC), which uses the maximum likelihood estimates
(MLE) and the number of parameters of a model, to find
the distribution that best describes the data (Akaike
1983; Burnham & Anderson 2002). Here, we consider the
Poisson, exponential and power-law distribution. Since
all of them can be described by one parameter, it is
sufficient to compare only the MLE to identify the best
model. Our results (table 1) show that scale-free-like
structures emerge if selection is strong enough
(threshold value for a=1.5). However, an analytical
approximation (see appendix A) shows that for the
limiting case where selection is extremely strong, the
asymptotic distribution is again exponential.

In scale-free networks, the probability p(k) that
a vertex is connected to k other vertices decays with
p(k)~k~". Empirical evidence from real-world net-
works has shown that the degree exponent v lies in the
range of about 2 to 4. The scale-free-like networks that
emerge by selective removal have connectivity distri-
butions following power-laws with degree exponents
1.8 <y <3.9 depending on the parameter values used.
Thus, selective removal can account for all degree
exponents observed in real-world networks.

Interestingly, the described selective removal mech-
anism does not produce scale-free-like networks if
fitness is defined as first-order connectivity only (no
second-order connectivity). This seems surprising,
since first-order connectivity has been linked to several
important properties of vertices, such as essentiality of

Table 1. Number of networks with a distribution that is best described by a power-law (see text).

(For each pair of a and d values, 10 networks were simulated. Hence, a table entry of seven means that seven out of 10 networks
are best described by a power-law. For growing networks, m=2, n=1 and t=3000. For non-growing networks, m= 3000, n=0

and t=100 000.)

a

d 1 1.5 2 2.5 3 3.5 4 4.5 5 10
growing networks (p=0.01)

0 0 0 10 10 10 10 10 10 10 10
0.0001 0 0 10 10 10 10 10 10 10 10
0.001 0 0 0 8 10 10 10 10 10 10
0.01 0 0 0 0 0 0 0 0 0 0
growing networks (p=0.05)

0 0 0 10 10 10 10 10 10 10 10
0.0001 0 0 10 10 10 10 10 10 10 10
0.001 0 0 0 8 10 10 10 10 10 10
0.01 0 0 0 0 0 0 0 0 0 0
non-growing networks (p=0.01)

0 0 4 8 10 10 10 10 10 10 10
0.0001 0 0 10 10 10 10 10 10 10 10
0.001 0 0 0 10 10 10 10 10 10 10
0.01 0 0 0 0 0 0 0 0 0 0
non-growing networks (p=0.05)

0 0 7 10 10 10 10 10 10 10 10
0.0001 0 9 10 10 10 10 10 10 10 10
0.001 0 0 10 10 10 10 10 10 10 10
0.01 0 0 0 0 0 10 10 10 10 10
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proteins (Jeong et al. 2001) or influence and status of =~ We thus have the simple, linear difference equation
individuals in social networks. However, it is easy to see

v
how removal based on second-order connectivity leads Ni(t+1) = Ny(t) + vo;; =100 + ——={N;.y — N;},
: S N(t)
to apparent preferential attachment, resulting in scale-
free-like networks. Imagine an extreme case of the (A1)

model where the network size is doubled by creating
new vertices and attaching all of them randomly. Then,
all of the freshly attached vertices are removed except
one, based on the selective removal criteria. As the dy;, v

second-order connectivity of the remaining new vertex dt ~ m+ nt
is quite high (or else it had probably been removed), it
appears as if it had been attached preferentially to an
already well-connected node. Yet, the attachment was

perfectly random.

with N(t)=m+nt. Approximating this difference
equation by a differential equation, we obtain

(Nig = N;) +vo; — 7055, (A2)

We can now show that the asymptotic link distribution
is exponential for large t, with the 1-links being
predominant. If we substitute

Interface

— —

2 gi Removal of vertices is certainly a decisive process in N
SUES the dynamics of networks especially in the absence of fi= N’
QlE2 network growth, and we showed here that if removal

probability correlates inversely with second-order we obtain

connectivity, apparent preferential attachment will P _ Ve . +16- —Lé- _n., A3
lead to scale-free-like network topologies. The model fi N (fia =£) Nt N2 N i (A3)
can be applied to dynamic networks where the fitness of Substituting r=v—n we have at equilibrium

a vertex is not only defined by the number of direct

connections, but also by the number of connections of fi = v 7 (A 4a)
the connecting vertices. In social networks, for instance, vtn

it is not only important how many people one knows, and for (i>2)

but also how many people those people know (Katz 2, w N

1953). This is certainly obvious, for example, in fi= (;) (v - n) . (A 4b)

economic or political networks. Also, second-order
connectivity is somewhat related to the measures of
betweenness and closeness (Wasserman & Faust 1994)
whose importance is well known in social networks.
Thanks to both the advances in network theory and the
increasing amount of network data available, we are Akaike, H. 1983 Information measures and model selection. In
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